How to Prove tan^2(theta) +1=sec^2(theta)

 


Use the basic identity

sin2(θ)+cos2(θ)=1

\sin^2(\theta) + \cos^2(\theta) = 1

Divide both sides of the identity by cos2(θ)\cos^2(\theta)

sin2(θ)cos2(θ)+cos2(θ)cos2(θ)=1cos2(θ)\frac{\sin^2(\theta)}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)} = \frac{1}{\cos^2(\theta)} tan2(θ)+1=sec2(θ)\tan^2(\theta) + 1 = \sec^2(\theta)

Final Answer:

tan2(θ)+1=sec2(θ)\boxed{\tan^2(\theta) + 1 = \sec^2(\theta)}

This proves the identity.




No comments:

Powered by Blogger.